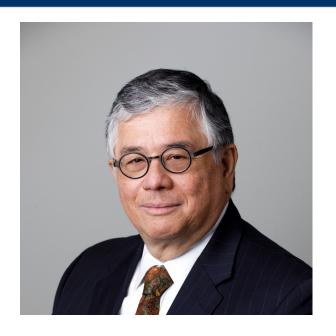
The ScholarRx Approach to Teaching:

Special Topic: CBME and Pre-Clerkship Education in the Foundational Sciences

Nikki Dalton
Partner Account Manager
ScholarRx
nicole.dalton@scholarrx.com

Education platform providing integrated teaching and learning modalities

CONTENT CREATION

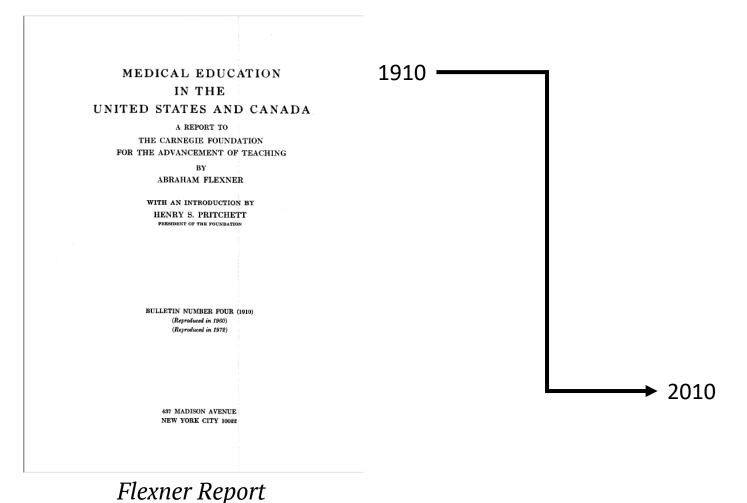


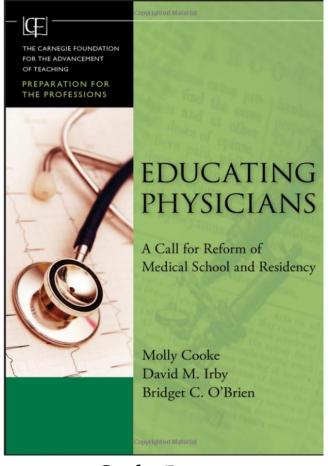
ASSESSMENT

Terence P. Ma, PhD, MBA
Professor and Chair
Department of Biomedical Sciences
Kansas College of Osteopathic Medicine
tma@kansashsc.org

CBME and Pre-Clerkship Education in the Foundation Sciences

Definitions:


- CBME: Competency-based medical education
- Pre-clerkship: Prior to required clerkships
 - Generally:
 - Basic science education
 - Doctoring
 - Population Health and Epidemiology
 - Generally: Before required "core" clerkships


Foundational Sciences:

- Basic Sciences
- Health Systems Science

Historical Change in Medical Education

Cooke Report

scholar

Summary of (some of the) recommendations

- Set clear, progressive expectations for learning outcomes, and assess competencies over time.
- Closely connect formal knowledge and clinical experience, including provisions of early clinical immersion and later revisiting of the sciences.
- Examine diseases and clinical situations from multiple perspectives.
- Create collaborative learning and practice environments committed to excellence and continuous improvement.

Conclusion: Learners and faculty need to be able to tell how well they are progressing toward the educational objectives.

scholar Transition to CBME

- Tradition:
 - Define a curriculum, teach it, and the student "learns" the curriculum
- Change:
 - *Outcome* is important:
 - It doesn't matter where the learner gained the knowledge, skills, or attitudes (KSAs). Demonstrating achievement of the outcome is the most important.
 - *Abilities* is important:
 - Competencies are the organizing principle for a curriculum.
 - *Time* is less important:
 - Learners need to demonstrate skills and abilities.
 - *Learner centeredness* is important
 - Make the learner responsible for their learning.

scholar Purpose of CBME

• "Identifying, defining and communicating the skills and qualities we want doctors to have [are] fundamentally important." (Harden et al., 1999)

• "competency-based medical education" is "[a]n outcomes-based approach to the design, implementation, assessment, and evaluation of medical education programs, using an organizing framework of competencies." (Frank et al., 2010)

scholar What is a competency?

An observable ability of a health professional, integrating multiple components such as knowledge, skills, values, and attitudes.

Frank et al., 2010

A statement describing a specific ability, or set of abilities, requiring specific knowledge, skill and/or attitude. Competencies are used to set performance standards that must be met.

MedBiquitous, 2016

Competency is the set of skills and behaviors required in the performance of a task or activity within a specific context.

IEEE, 2022

Recommended Practices for Well-Defined Competencies Workgroup

scholar What is competence?

• The array of abilities (knowledge, skills, and attitudes) across multiple domains or aspects of performance in a certain context. Statements about competence require descriptive qualifiers to define the relevant abilities, context, and stage of training. Competence is multi-dimensional and dynamic. It changes with time, experience, and setting.

Frank et al., 2010

The level of ability required to perform a task or activity.

IEEE, 2022

Thus, "competent" is:

Possessing the minimum required abilities in all domains in a certain context at a defined stage of medical education, training, or practice.

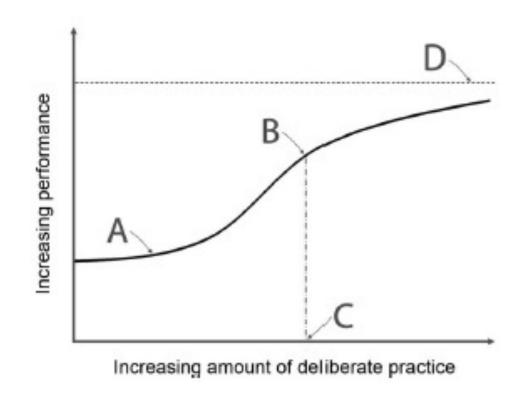
Frank et al., 2010

scholar Essential Corollary

- There must be evidence of <u>achieving competence</u> for every competency listed.
 - For every listed competency, there must be a statistically valid demonstration of achieving competence.

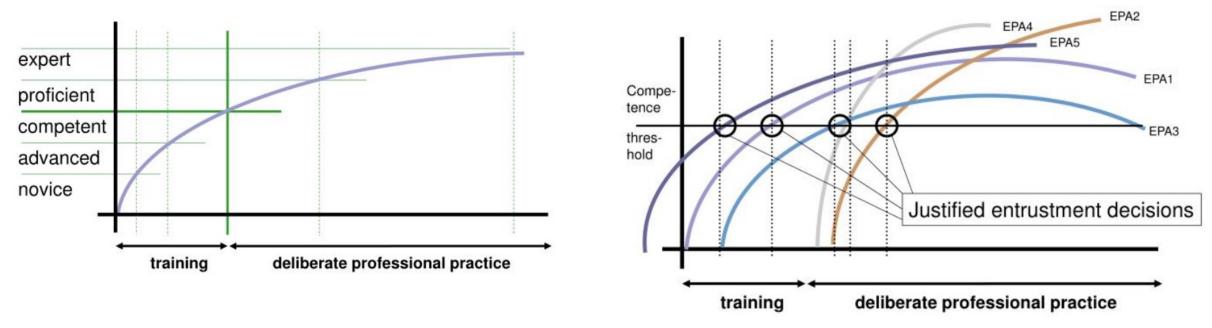
Comparison between Learning Objectives and Competencies

Learning objectives


- Founded on Bloom's Taxonomy
 - Verbs used to describe expected achievement.
 - Based on a specific (or set of) learning experiences.
- What the learner is expected to learn
 - Achieving the learning objective is the goal
 - Evidence is typically based on one observation
 - Not always assessed
- Time dependent (e.g., by the end of the session, you will)

Competencies

- Based on learning curves
 - Levels are set along a learning curve
 - Demonstration of the outcome can come from <u>any</u> learning experience (formal or informal)
- What the learner can demonstrate
 - The minimum required for competence ("passing")
 - Evidence is observed multiple times
 - Must be assessed
- Time independent
 - Just means that learners should learn at their own pace.
 - Doesn't mean that a time limit cannot be set.


Thurstone Learning Curve

This curve illustrates a measure of performance graphed against time spent learning. Pint A is the amount of practice before a learner reaches the efficient phase of learning. The slope from A to B represents the most efficient phase of learning. Point C is the number of repetitions required to reach a level of performance after which learning becomes less efficient. Line D is the upper asymptote representing maximal performance.

Learning Curves over Time

Note: While these figures refer to EPAs, the concept of learning curves are equally applicable to competencies.

Modified from ten Cate, 2010 Based on Dreyfus & Dreyfus, 1986

Comment on Entrustable Professional Activities (EPAs)

- EPAs are units of professional practice that constitute the daily practice of health care professionals.
- EPAs are work descriptors and only reflect the work, tasks and activities that are to be carried out in health care irrespective of who does that work.
- EPAs refer to work that must be done; Skills and individual competencies are attributes of individual people.
- While we can add "nested" EPAs (European) or "milestones" (US-GME) as "steps along the way," an EPA still needs to address a work/job activity (not individual KSAs).
- Ergo, foundational science knowledge are competencies, not EPAs.

Competencies in EPAs

	EPA 1	EPA 2	EPA 3	EPA 4
Competency 1	X		X	X
Competency 2		X	X	X
Competency 3	X	X	X	X
Competency 4		X		
Competency 5		X	X	
Competency 6	X		X	X

Ma and ten Cate, 2022

- Just because an individual has all the competencies of an EPA, it does not mean that the person can perform the EPA.
- Just because an individual can perform the activity of the EPA, it does not mean that person can be trusted to perform the activity unsupervised.

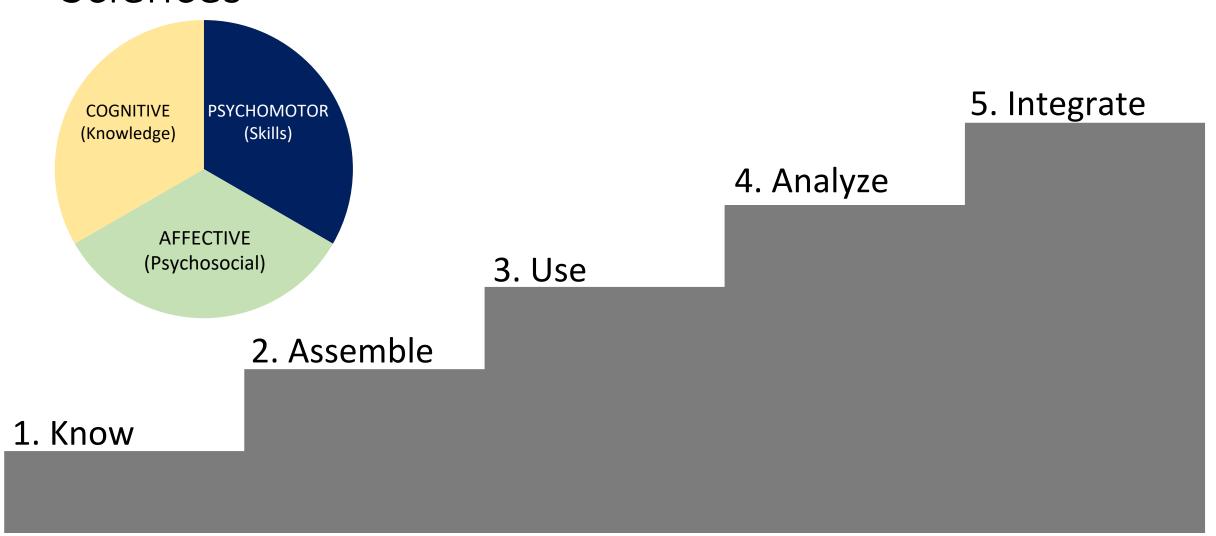
Conclusion on EPAs

- Foundational science knowledge are competencies, not EPAs.
 - They are not professional activities.
 - They are not activities we trust a learner to do unsupervised.

Challenge of applying to the Knowledge Domain in Foundational Sciences

Change of mindset is required:

- Should be looking at progress in learning.
 - Collect and analyze data about the progress of learning in each learner.
 - Focus is more on formative assessments.
 - Assessments are a means of learning and providing feedback.
- Data needs to be collected for every competency.
 - Conclusion must be statistically valid.
- Criterion-referenced and not norm-referenced:
 - Passing is based on a set of pre-established criteria.
 - Achievement of their peers is irrelevant.
 - (no curves)



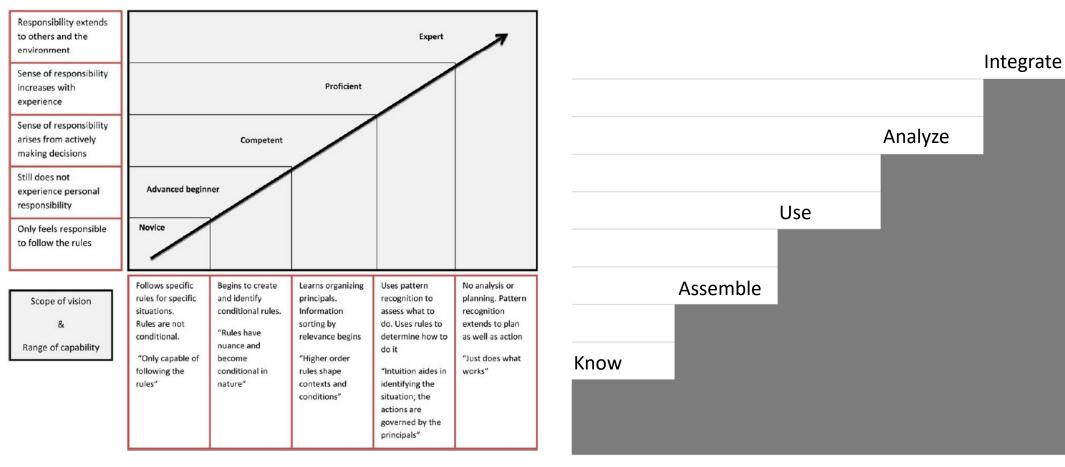
Approach to Competency in Foundational Sciences

- 1. Have a model for levels of learning achievement where the outcome is in the middle of the learning achievement scale.
- 2. Develop a *limited* set of competencies that represent the outcomes of the "course."
 - Write competencies as the expected outcome at the end of the course.
 - Be aware of how you can document that the learner achieved the expected outcome.
 - If necessary, develop "subcompetencies" or "milestones."
 - Can use "learning objectives" as subcompetencies.
- 3. Assess competencies.
 - Plan to assess all competencies adequately.
 - All "subcompetencies" or "milestones" must be assessed adequately.
 - Plan for a means of multiple observations to determine competence.

Proposed Levels of Achievement for Foundational Sciences

Levels of Achievement for a Subcompetency

Level	Explanation
Know	Learners <u>know</u> the elements of that comprise the subcompetency.
Assemble	Learners can <u>assemble</u> the elements of the subcompetency together.
Use	Learners can <u>use</u> the elements of the subcompetency.
Analyze	Learners can <u>analyze</u> the elements of the subcompetency to address a challenge (knowledge, skill, or behavioral).
Integrate	Learners can integrate the elements of the subcompetency with other competencies or subcompetencies to address a challenge.



Levels of Achievement for a Subcompetency

Level	Explanation	Example: Discuss the coronary blood supply	
Know	Learners know the elements of that comprise the subcompetency.	Be able to list the coronary vessels.	
Assemble	Learners can <u>assemble</u> the elements of the subcompetency together.	Be able to describe the distribution of blood supply and common variations.	
Use	Learners can <u>use</u> the elements of the subcompetency.	Be able to describe the interruption of blood flow due to loss of specific coronary vessels.	
Analyze	Learners can <u>analyze</u> the elements of the subcompetency to address a challenge (knowledge, skill, or behavioral).	Be able to discuss myocardial ischemia and the use of percutaneous coronary intervention (PCI, angioplasty).	
Integrate	Learners can integrate the elements of the subcompetency with other competencies or subcompetencies to address a challenge.	Describe what sources of blood can be used for the heart in a CABG procedure (e.g., internal thoracic arteries).	

Modeled after Dreyfus & Dreyfus Model for Skills Acquisition used for Clinical Skills

The KansasCOM Curriculum – Years 1 & 2

Patient Presentation (PP) Track

Integrated Anatomical Sciences (IAS) Track

Osteopathic Manipulative Medicine (OMM) Track

Physicianship Track

Population Health and Evidence-Based Medicine (PH) Track

scholar

Year 1and 2 modules: PPT and IAS

	Weeks 1-4	Weeks 5-8	Weeks 9-12	
Year 1 – Trimester 1	Introduction to Medicine		Blood	
Year 1 – Trimester 2	Gastrointestinal	Cardiovascular	Respiratory	
Year 1 – Trimester 3	Musculoskeletal	Renal	Endocrine	
Year 2 – Trimester 1	Neuroscience and Special Senses		Psychiatry	Dermatology
Year 2 – Trimester 2	Reproductive Health	Pediatrics		Geriatrics
Year 2 – Trimester 3	Integrative Medicine and Onramp to Clerkship (include COMLEX Level I prep)			

scholar

Learner Expectations before Sessions

- Pre-readings
 - ScholarRx (primary source)
 - Most have been cloned and modified specifically for KansasCOM by our faculty.
 - Assigned reading in textbooks
 - Faculty-developed materials (including voice over PowerPoint)
- Additional materials (some are required)
 - Qmax quizzes
 - LMS (Canvas) quizzes
 - TrueLearn quizzes

thank

Q&A

ScholarRx Office Hours

Biweekly virtual training for Rx Bricks and Qmax Assessment

Thank you for joining!

The ScholarRx Approach to Teaching:

Special Topic: CBME and Pre-Clerkship Education in the Foundational Sciences

